

CFD Models and Validation

Ray Cocco Particulate Solid Research, Inc. (PSRI)

August 13, 2015

Outline

- Validation challenges in fluidization
- PSRI's modeling methodology
- Gaps in PSRI's modeling methodology
- Summary

Challenges in Validating Fluidization Models

- Experiments have mostly been focused on providing validation for model development.
- Particle have a wide range of properties that may not be captured with a model
- Modeling with a commercial code of commercial systems requires a "fitting" of the drag model
- Experimental methods are limited for this "fitting"

The Multi-scale Validation Paradox

Micro-scale

I to 100's Particles

Meso-scale Millions to Billions of Particles

Macro-scale Trillions of Particles

10⁻⁶ to 10⁻⁴ m Experiments are cheap Simulations are cheap Analysis are expensive

10⁻² to 10⁻¹ m Experiments are inexpensive Simulations are cheap Analysis are inexpensive 10⁻¹ to 10² m Experiments are expensive Simulations are expensive Analysis are cheap

The Multi-scale Validation				
	Paradox Model Fitting	Model Development		
Micro-scale	Meso-scale	Macro-scale		
I to 100's Particles	Millions to Billions of Particles	Trillions of Particles		
10 ⁻⁶ to 10 ⁻⁴ m	10 ⁻² to 10 ⁻¹ m	10 ⁻ ' to 10 ² m		
Experiments are cheap	Experiments are inexpensive	Experiments are expensive		
Simulations are cheap	Simulations are cheap	Simulations are expensive		
Analysis are expensive	Analysis are inexpensive	Analysis are cheap		

Par la seco

The Multi-scale Validation Paradox Fundamentals Meso-scale Micro-scale Macro-scale Millions to Billions Trillions of I to 100's Particles of Particles Particles 10⁻⁶ to 10⁻⁴ m 10⁻¹ to 10² m 10⁻² to 10⁻¹ m Experiments Experiments are Experiments are are cheap inexpensive expensive Simulations Simulations Simulations are cheap are cheap are expensive Analysis are Analysis are Analysis are expensive inexpensive cheap

Factors Effecting the Fundamentals

- Particle diameter
- Particle density
- Particle size distribution
- Particle shape
- Particle morphology
- Particle adsorbates

Particle Size and Density

Axial Segregation with Size-Difference Binary Mixture

Most of the segregation occurs in the full-developed flow region

Radial Segregation with Size-Difference Binary Mixture

• More segregation near the top of the riser and for downflow and upflow at the walls

J.W. Chew, R. Hays, J.G. Findlay, S.B.R. Karri, T.M. Knowlton, R.A. Cocco, et al., Species segregation of binary mixtures and a continuous size distribution of Group B particles in riser flow, Chemical Engineering Science. 66 (2011) 4595–4604.

Segregation in Fluidized Beds

S.D Dahl, C.M. Hrenya, Chemical Engineering Science 60 (2005) 6658–6673

Bubbles and Segregation

- Axial segregation profile of the finest and coarse particles with a Gaussian distribution ($\sigma/d_{sm}=0.3$)
- Bubbles limit segregation
- Bottom of the bed is limited in bubbles, thus segregation can be significant here

J. Chew, C. Hrenya, On the Link between Bubbling and Segregation Patterns in Gas-Fluidized Beds with Continuous Size Distributions, Ind. Eng. Chem. Res. (2010) 1–29.

Particle Size Distribution

Strength in Numbers

Gas Bypassing in Fluidized Beds

0.9 m ID Fluidized Bed Ug = 0.46 m/sec with FCC powder (3% fines)

- Large regions of the bed poorly fluidized!
 - Severe bypassing of gas
- Grid pressure drop
 > 1/3 bed pressure
 drop
- Little help in detection
 - $\Delta P/L$ was uniform
 - Entrainment rate did not change

Gas Bypassing in Fluidized Beds

0.9 m ID Fluidized Bed Ug = 0.46 m/sec with FCC powder (3% fines)

- Large regions of the bed poorly fluidized!
 - Severe bypassing of gas
- Grid pressure drop
 > 1/3 bed pressure
 drop
- Little help in detection
 - $\Delta P/L$ was uniform
 - Entrainment rate did not change

Gas Bypassing in Fluidized Beds

0.9 m ID Fluidized Bed Ug = 0.46 m/sec with FCC powder (3% fines)

- Large regions of the bed poorly fluidized!
 - Severe bypassing of gas
- Grid pressure drop
 > 1/3 bed pressure
 drop
- Little help in detection
 - $\Delta P/L$ was uniform
 - Entrainment rate did not change

Fines Matter

PSRI & NETL Challenge Problem

Eulerian-Eulerian with Single Particle Size Eulerian-Eulerian with Population Balance for Particle Size Distribution

- Significant difference in hydrodynamics due to fines level, not median particle size.
- If using one representative particle size, which one do you use?

- Significant difference in hydrodynamics due to fines level, not median particle size.
- If using one representative particle size, which one do you use?

Gas Bypassing

Reported	dp50, µm	% Fines, (< 44 µm)
3 wt%	80.4 µm	2.7%
8 wt%	81.0 µm	8.6%

- Significant difference in hydrodynamics due to fines level, not median particle size.
- If using one representative particle size, which one do you use?

Particle Shape

Aerodynamics

Particle-Particle Interactions

Particle-Particle Interactions

Particle Morphology and Adsorbates

• 30% of the material in the freeboard were observed as clusters Average cluster size was particles

Phantom V7.1 @ 4000 fps, 20 µs exposure (NETL)

FCC powder with d_{p50} of 72 microns in a 6-in (15-cm) ID fluidized bed with a superficial gas velocity of 1 ft/sec (0.3 m/sec)

• ←50 µm Diameter

←50 µm Diameter

Particle Morphology and Adsorbates

• 30% of the material in the freeboard were observed as clusters Average cluster size was particles

Phantom V7.1 @ 4000 fps, 20 µs exposure (NETL)

FCC powder with d_{p50} of 72 microns in a 6-in (15-cm) ID fluidized bed with a superficial gas velocity of 1 ft/sec (0.3 m/sec)

• ←50 µm Diameter

←50 µm Diameter

Powder Drop Experiment

- Particle clustering may not be due to hydrodynamic effects
- All commercial CFD codes for granular-fluid systems capture only hydrodynamic effects
 - Cohesive effects are ignored
 - Electrostatics
 - Van der Waals
 - Boundary layer "wetting"

University of Chicago powder drop experiment with 100 micron glass beads

Royer, J.R., Evans, D.J., Oyarte, L., Guo, Q., Kapit, E., Möbius, M.E., Waitukaitis, S.R., Jaeger, H.M., H, Nature 459 (2009) 1110-1113.

Powder Drop Experiment

- Particle clustering may not be due to hydrodynamic effects
- All commercial CFD codes for granular-fluid systems capture only hydrodynamic effects
 - Cohesive effects are ignored
 - Electrostatics
 - Van der Waals
 - Boundary layer "wetting"

University of Chicago powder drop experiment with 100 micron glass beads

Royer, J.R., Evans, D.J., Oyarte, L., Guo, Q., Kapit, E., Möbius, M.E., Waitukaitis, S.R., Jaeger, H.M., H, Nature 459 (2009) 1110-1113.

What are Holding These Clusters Together?

- Glass beads $(d_{p50} = 107 \mu m)$ vs. copper powder $(d_{p50} = 130 \mu m)$
- Both performed below I torr
- Glass beads clustered together were the copper powder did not

No Change in Electrical Field

What are Holding These Clusters Together?

- Glass beads $(d_{p50} = 107 \mu m)$ vs. copper powder $(d_{p50} = 130 \mu m)$
- Both performed below I torr
- Glass beads clustered together were the copper powder did not

No Change in Electrical Field

Surface Roughness and Cohesive Forces

F_{coh} (nN)

100

Counts

- Copper has 3.5 times more cohesive forces between two particles than the glass beads
- Surface protrusions from rough surfaces appear not to be inhibiting cohesive forces
- Oil did make the copper particles cluster

CHICAGO

AFM Results from University of Chicago

F_{coh} (nN)

What are Holding These Clusters Together?

Clean Glass

AFM Results from University of Chicago

Glass Beads with and without Aerosil

- Relatively smooth surface appear to result in high cohesion
 Aerosil addition reduced cohesion
 Could this be a surface roughness factor?
 Rough surfaces results
 - in less cohesive forces?

Particle Clustering During Free Fall

Particle Clustering During Free Fall

Entrainment

Entrainment rate calculations based on FCC catalyst powder with 9% fines in a 3-meters ID x 12-meters tall fluidized bed with a bed height of 6 meters and superficial gas velocity of 1 m/sec at room temperature

Stojkovski, V., Kostic', Z., Thermal Science, 7 (2003) 43-58. Zenz, P.A., Weil, N.A., AIChE J., 4 (1958) 472-479. Lin, L, Sears, J.T., Wen, C.Y., Powder Technology, 27 (1980) 105-115. M. Colakyan, N. Catipovic, G. Jovanovic, T.J. Fitzgerald, AIChE Symp. Ser. 77 (1981) 66.

Colakyan, M., Levenspiel, O., Powder Technology, 38 (1984), pp. 223-232 Geldart, D., Cullinan, J., Georghiades, S., Gilvray, D., Pope, D.J., Trans. Inst. Chem. Eng., 57 (1979) 269-277.

Factors Affecting Drag

Not all correlations predict the same trend with temperature

All correlations are highly sensitive to solids volume fraction

High pressures result in greater drag due to higher gas density

The less spherical the particles, the greater the drag

Factors Affecting Drag

Not all correlations predict the same trend with temperature

All correlations are highly sensitive to solids volume fraction

High pressures result in greater drag due to higher gas density

The less spherical the particles, the greater the drag

Micro-Scale Data Analysis Limited

Particle-particle and/or particle/monolayer interactions are complex
Modeling, even physics, not readily available
Process modeling needs to use
Sub-grid models for what we don't understand
Large scale validation for model development

Applying the Fundamentals

The Multi-scale Validation Paradox Model Development Fundamentals Meso-scale Micro-scale Macro-scale Millions to Billions Trillions of I to 100's Particles of Particles Particles 10⁻⁶ to 10⁻⁴ m 10⁻¹ to 10² m 10⁻² to 10⁻¹ m Experiments Experiments are Experiments are are cheap inexpensive expensive Simulations Simulations Simulations are cheap are cheap are expensive Analysis are Analysis are Analysis are inexpensive cheap expensive

PSRI/NETL Challenge Problem

Circulating Fluidized Bed

- •NETL's 12-in (30-cm) ID x 52-ft (16-m) tall CFB
- •Geldart Group A and B material
- •Gas jet in riser

Bubbling Fluidized Bed PSRI's 3-ft (92-cm) ID x 20-ft (6-m) tall BFB FCC Powder with different fines levels 3% and 12% fines Gas bypassing present in low fines case

BFB Modeling Results: Modeler BFBI

with PB for PSD

RSRI -

Applying the Fundamentals

BFB Modeling Results: Modeler BFBI with PB for PSD

Applying the Fundamentals

BFB Modeling Results: Modeler BFBI with PB for PSD

Applying the Fundamentals

CFB Modeling Results: Modeler CFB5 Radial Profile: Case 3 up(r) - HDPE

CFB Modeling Results: Modeler CFB5 Radial Profile: Case 4 G (r) - HDPE

CFB Modeling Results: Modeler CFB5 Radial Profile: Case 5 G (r) - HDPE

CFB Modeling Results: Modeler CFB5 Radial Profile: Case 5 up(r) - HDPE

Risers have been designed to provide symmetric profiles

Imaging the Core-Annulus Profile

30 ft/sec & 10 lb/ft²-sec 9.1 m/sec & 50 kg/m²-sec 60 ft/sec & 80 lb/ft²-sec 18.3 m/sec & 400 kg/m²-sec

FCC Catalyst in PSRI's 8-Inch (20-cm) Dia x 72-Foot (22-m) Tall Riser Slower particle velocities means we can use higher resolutions

Imaging the Core-Annulus Profile

60 ft/sec & 80 lb/ft²-sec 18.3 m/sec & 400 kg/m²-sec

FCC Catalyst in PSRI's 8-Inch (20-cm) Dia x 72-Foot (22-m) Tall Riser Slower particle velocities means we can use higher resolutions

Not Just Core Annulus Profile

PSRI's 8-inch (20-cm) dia x 72-feet (22-m) tall riser with FCC powder

Not Just Core Annulus Profile

PSRI's 8-inch (20-cm) dia x 72-feet (22-m) tall riser with FCC powder

Level of Down Flow is Important

Degree of backmixing depends if we have up flow or down flow at the wall
For FCC, coking is an issue with backmixing

J. McMillan, F. Shaffer, B. Gopalan, J.W. Chew, C. Hrenya, R. Hays, et al., Particle Cluster Dynamics During Fluidization, Chemical Engineering Science. 100 (2013) 39–51

PIV Measurements: NETL's HSPIV

Tracking is based on at least 5 subsequent frames

F. Shaffer, B. Gopalan, R.W. Breault, R. Cocco, S.B.R. Karri, R. Hays, et al., High speed imaging of particle flow fields in CFB risers, (2013) 1–14.

PSRI's 8-inch (20-cm) dia x 72-feet (22-m) tall riser with FCC powder

PIV Measurements: NETL's HSPIV

Tracking is based on at least 5 subsequent frames

F. Shaffer, B. Gopalan, R.W. Breault, R. Cocco, S.B.R. Karri, R. Hays, et al., High speed imaging of particle flow fields in CFB risers, (2013) 1–14.

PSRI's 8-inch (20-cm) dia x 72-feet (22-m) tall riser with FCC powder

Cluster Velocities

- Clusters determined by lower velocities AND higher solids concentrations
- Cluster Velocities measured at 12 to 24 ft/sec (3.7 to 7.3 m/ sec)
 - 50% lower than the mean particle velocity

Granular Temperature

Measuring Granular Temperature in a 0.2-m Diameter x 22-m Tall Riser with FCC Catalyst Powder

Core

Wall

Clusters and Streamers

Quantifying Riser Hydrodynamics

Particle Tracking of In-Situ Images

Velocity Vector Map Derived from In-Situ Images

Contour Plot of Fluctuating Velocity (RMS)

Wavelet Decomposition

- Wavelet decomposition provides a means of extracting different frequency ranges of data signals by repeatedly breaking down the signal into higher-frequency details (D) and lower-frequency approximations (A)
- Both Matlab and Mathematica have wavelet decomposition tools

Wavelet Decomposition

- Wavelet decomposition can be used with acoustic, pressure or fiber optic data in risers and fluidized beds
- For this riser study, fiber optic data were used.
- By normalizing the energies of the high-frequency details (D), the micro, meso and macro scale events can be discerned
 - Periodicity is not a requirement for wavelet decomposition

Application of Wavelet Decomposition to Riser Hydrodynamics

- Unlike previous work where the demarcation between scales was arbitrary, here demarcation was based on the resulting features
 - Micro-scale is 0 to 5 scale
 - Meso-scale is 5 to 11 scale
 - Clusters
 - Macro is > 11 scale
- Cluster can now be tracked according to appearance, duration and frequency

T.Yang, L. Leu, Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed, AIChE Journal. 55 (2009).

The role of clusters is complex and dependent on particle size, density, coefficient of restitution (elasticity), friction and shape

J.W. Chew, R. Hays, J.G. Findlay, T.M. Knowlton, S.B.R. Karri, R.A. Cocco, et al., Cluster characteristics of Geldart group B particles in a pilot-scale CFB riser. II. Polydisperse systems, Chemical Engineering Science. 68 (2012) 82–93. J.W. Chew, R. Hays, J.G. Findlay, T.M. Knowlton, S.B.R. Karri, R.A. Cocco, et al., Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser. I. Monodisperse systems, Chemical Engineering Science. 68 (2012) 72–81. J.W. Chew, D.M. Parker, R.A. Cocco, C.M. Hrenya, Cluster characteristics of continuous size distributions and binary mixtures of Group B particles in dilute riser flow, Chemical Engineering Journal. 178 (2011) 348–358.

Macro-scale Experiments are Cost Limited

 For model development, this work is practical. However, it is too expensive and time consuming for "fitting"

The Multi-scale Validation		
Fundamentals	Paradox Model Fitting	Model Development
Micro-scale	Meso-scale	Macro-scale
I to 100's Particles	Millions to Billions of Particles	Trillions of Particles
10 ⁻⁶ to 10 ⁻⁴ m	10 ⁻² to 10 ⁻¹ m	10 ⁻¹ to 10 ² m
Experiments are cheap	Experiments are inexpensive	Experiments are expensive
Simulations are cheap		
Analysis are expensive	Analysis are inexpensive	Analysis are cheap

and the second

PSRI Modeling Methodology

- Needs to be small scale
- Quantifiable and reproducible data

U_{mf}, U_{mb} and bed density determined
Experimentally
Computationally

$U_{mf,} \ U_{mb}$ and Bed Density for FCC eCat Powder

Comparison of Experimental and Computational Results

- Drag parameters are varied until bed density and U_{mf} "match" experimental data
- Method is CPU intensive

0.38

-0.318

-0.255

-0.193

-0.131

-0.0682

0.00584

Barracuda™

 Most jet penetration correlations do not apply to high pressure

Validating with Jet Penetration Lengths

0.38

-0.318

-0.255

-0.193

-0.131

-0.0682

0.00584

Barracuda™

 Most jet penetration correlations do not apply to high pressure

Validating with Jet Penetration Lengths

Fluidization of Geldart Group D Powders

J. McMillan, F. Shaffer, B. Gopalan, J.W. Chew, C. Hrenya, R. Hays, et al., Particle Cluster Dynamics During Fluidization, Chemical Engineering Science. 100 (2013) 39–51

Fluidization of Geldart Group D Powders

Other Experiments

UCL 2D Bed Oscillation Experimental Study

UCL

Other Experiments

UCL 2D Bed Oscillation Experimental Study

UCL

1UCL

"Phase Shift" As Gas Flows Through Bed

Cross-correlation used to determine how the gas fluctuation periods shift with increasing axial position

Discerning Drag with Phase Shifts in Gas Velocity?

What About CFB Risers?

*Based on D. Kunii, O. Levenspiel, Fluidization Engineering, 2nd, Butterworth-Heinemann, 1991

Question

Validation Data Model for Scale Up, Reliability and Optimization Fitting Data

 Do we need to develop experimental methods for model "fitting"

 As well as continued efforts with model development

 Do we need to completely understand particle interactions or can we come up with clever experiment(s) to bridge that gap?

